Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the coefficients of x2 and x3 are both zero, in the expansion of the expression (1 + ax + bx2) (1 - 3x)15 in powers of x, then the ordered pair (a, b) is equal to :
Q. If the coefficients of
x
2
and
x
3
are both zero, in the expansion of the expression
(
1
+
a
x
+
b
x
2
)
(
1
−
3
x
)
15
in powers of
x
, then the ordered pair
(
a
,
b
)
is equal to :
2624
200
JEE Main
JEE Main 2019
Binomial Theorem
Report Error
A
(28, 315)
54%
B
(-54, 315)
29%
C
(-21, 714)
12%
D
(24, 861)
4%
Solution:
Coefiicient of
x
2
=
15
C
2
×
9
−
3
a
(
15
C
1
)
+
b
=
0
⇒
−
45
a
+
b
+
15
C
2
×
9
=
0
Also,
−
27
×
15
C
3
+
9
a
×
15
C
2
−
3
b
×
15
C
1
=
0
⇒
9
×
15
C
2
a
−
45
b
−
27
×
15
C
3
=
0
⇒
21
a
−
b
−
273
=
0
…
(i)
+
(ii)
−
24
a
+
672
=
0
⇒
a
=
28
S
o
,
b
=
315