Tr+1 in the expansion [ax2−(bx1)]11=11Cr(ax2)11−r(bx1)r =11Cr(a)11−r(b)−r(x)22−2r−r
For the Coefficient of x7 , we have
22 - 3r = 7 ⇒ r = 5 ∴ Coefficient of x7 =11C5(a)6(b)−5...(1)
Again Tr+1 in the expansion [ax−bx21]11=11Cr(ax2)11−r(−bx21)r =11Cr(a)11−r(−1)r×(b)−r(x)−2r(x)11−r
For the Coefficient of x−7 , we have
Now 11 - 3r = - 7 ⇒ 3r = 18 ⇒ r = 6 ∴ Coefficient of x−7 =11C6a5×1×(b)−6 ∴ Coefficient of x7 = Coefficient of x−7 ⇒11C5(a)6(b)−5=11C6a5×(b)−6 ⇒ab=1.