In(ax2+bx1)13, Tr−1=13Cr(ax2)13−r(bx1)r =13Cra13rx263r
For co-eff of x8=26−3r=8 ⇒3r ⇒18r=6 ∴ co-eff of x8=13C6a7⋅b61
Again for (ax−bx1)13, Tr+1=13Cr(ax)13−r(−bx21) =13Cra13rx13r2r(b1)r =13Cra13−rx13−3r(−b1)r
For co-eff. of x−8, 13−3r=−8 ⇒21=3r ⇒r=7 ∴ co-eff. of x−8 is 13C7a6(b1)7=13C6(−b7a6)
By the given condition 13C6b6a7=−13C6b7a6 ⇒a=−b1 ⇒ab+1=0