Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the circles x 2 + y 2 =9 and x2 + y 2 + 2α x + 2y +1 = 0 touch each other internally, then α =
Q. If the circles
x
2
+
y
2
=
9
and
x
2
+
y
2
+
2
αx
+
2
y
+
1
=
0
touch each other internally, then
α
=
3502
211
KCET
KCET 2008
Conic Sections
Report Error
A
±
3
4
48%
B
1
13%
C
3
4
26%
D
−
3
4
13%
Solution:
Centres and radii of the given circles
x
2
+
y
2
=
9
and
x
2
+
y
2
+
2
a
x
+
2
y
+
1
=
0
is
C
1
(
0
,
0
)
,
r
1
=
3
and
C
2
(
−
α
,
1
)
and
r
2
=
α
2
+
1
−
1
=
∣
α
∣
Since, two circles touch internally,
∴
C
1
C
2
=
r
1
−
r
2
⇒
,
α
2
+
1
2
=
3
−
∣
α
∣
⇒
α
2
+
1
=
9
+
α
2
−
6∣
α
∣
⇒
6∣
α
∣
=
8
⇒
∣
α
∣
=
3
4
⇒
α
=
±
3
4