Given, circles are S1=x2+y2−2x−2y−7=0 S2=x2+y2+4x+2y+k=0
Here, g1=−1,f1=−1.c1=−7 g2=2,f2=1,c2=k
Equation of common chord is S1−S2=0 ⇒x2+y2−2x−2y−7−x2−y2−4x−2y−k=0 ⇒−6x−4y−7—k=0 ⇒6x+4y+7+k=0…(i)
Since, S1 and S2 cut orthogonally ∴2(g1g2+f1f2)=c1+c2 ⇒2(−2−1)=−7+k ⇒−6+7=k ⇒k=1
Then, from Eqs. (i), we get 6x+4y+8=0
Now, length of the common chord r1=1+1+7=3 c1=(1,1)
Let C1M = perpendicular distance from centre C1(1,1) to the common chord 6x+4y+8=0 ⇒C1M=62+42∣6+4+8∣=52∣18∣=21318=139
Now, PQ=2PM=2(C1P)2−(C1M)2 =29−(139)2 =29−1381 =21336=1312