Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the circle x2+y2+2 k x+4 y-4=0 has it's centre in 4 text th quadrant and touches the circle x2+y2+6 x-2 y+6=0, then k=
Q. If the circle
x
2
+
y
2
+
2
k
x
+
4
y
−
4
=
0
has it's centre in
4
th
quadrant and touches the circle
x
2
+
y
2
+
6
x
−
2
y
+
6
=
0
, then
k
=
132
150
TS EAMCET 2021
Report Error
A
−
5
B
7
−
15
C
7
−
23
D
−
1
Solution:
(
−
k
,
−
2
)
→
Centre of circle
x
2
+
y
2
+
2
k
x
+
4
y
−
4
=
0
since it lies in fourth quadrant
−
k
>
0
⇒
k
<
0
Centre of circle
x
2
+
y
2
+
6
x
−
2
y
+
6
=
0
is
(
−
3
,
1
)
and radius
=
9
+
1
−
6
∵
r
1
+
r
2
=
c
1
c
2
k
2
+
4
+
4
+
9
+
1
−
6
=
(
k
−
3
)
2
+
(
−
2
−
1
)
2
k
2
+
8
+
2
=
k
2
−
6
k
+
18
k
=
−
1
satisfies the equation.