Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the centroid of the tetrahedron OABC, where A, B, C are given by (α, 5, 6), (1, β, 4), (3, 2, γ) respectively be (1, -1 ,2), then value of α2+β2+γ2 equals
Q. If the centroid of the tetrahedron
O
A
BC
, where
A
,
B
,
C
are given by
(
α
,
5
,
6
)
,
(
1
,
β
,
4
)
,
(
3
,
2
,
γ
)
respectively be
(
1
,
−
1
,
2
)
, then value of
α
2
+
β
2
+
γ
2
equals
1635
207
Three Dimensional Geometry
Report Error
A
α
2
+
β
2
B
γ
2
+
β
2
C
α
2
+
γ
2
D
0
Solution:
Centroid of tetrahedron,
x
=
4
x
1
+
x
2
+
x
3
+
x
4
or
1
×
4
=
α
+
1
+
3
+
0
or
α
=
0
∴
α
2
+
β
2
+
γ
2
=
β
2
+
γ
2
(as
α
=
0
)