Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the arithmetic mean of a and b is (an+bn/an-1+bn-1), then the value of n is
Q. If the arithmetic mean of
a
and
b
is
a
n
−
1
+
b
n
−
1
a
n
+
b
n
, then the value of
n
is
1382
205
WBJEE
WBJEE 2007
Report Error
A
-1
B
0
C
1
D
None of the above
Solution:
We know that arithmetic mean of
a
and
b
is
2
a
+
b
∴
2
a
+
b
=
a
n
−
1
+
b
n
−
1
a
n
+
b
n
⇒
(
a
+
b
)
(
a
n
−
1
+
b
n
−
1
)
=
2
(
a
n
+
b
n
)
⇒
a
n
+
b
a
b
n
+
a
b
a
n
+
b
n
=
2
(
a
n
+
b
n
)
⇒
b
a
b
n
+
a
b
a
n
=
a
n
+
b
n
⇒
a
n
(
a
a
−
b
)
=
−
b
n
(
b
b
−
a
)
⇒
b
n
a
n
=
b
a
⇒
(
b
a
)
n
=
(
b
a
)
1
∴
n
=
1