Let, Z=x+iy
Now, (Z−2)(Zˉ−1)=ZZˉ−2Zˉ−Z+2 =x2+y2−3x+2+iy
argument of (1−i)(3+i)(1+3i)=−4π+6π+3π=4π
Now, since both arguments are equal ⇒x2+y2−3x+2=y(where,y>0) ⇒x2+y2−3x−y+2=0
Hence, the centre of the circle is (23,21)=(a,b) ⇒a+b=23+21=24=2