Q.
If the area bounded by the line y=mx+2 , m>0 and x=2y−y2 is minimum and equals to A , then the value of 3A is
262
162
NTA AbhyasNTA Abhyas 2022Application of Integrals
Report Error
Answer: 4
Solution:
Given y=mx+2…(i) &x=2y−y2…(ii)
Solving simultaneously for point of intersection ⇒my−2=2y−y2 ⇒my−2=(y−2)(−y) ⇒y−2=0 or m1=−y ⇒y=2,−m1 ∴ area bounded by x=f(y),x=g(y) line y=a and y=b is a∫b∣f(y)−g(y)∣⋅dy
Required area =−m1∫2[(2y−y2)−(my−2)]dy =(∣∣y2−3y3−m1(2y2)+m2y∣∣)−m12 =[4−38−m2+m4]−[m21+3m31−2m31−m22]=f(m)
Now f(m)=34+m2+m21+6m31 will be minimum when m→∞
So, minimum value of f(m)=34 A=34 3A=4