Given curves; y=mx2 and y2m=x;m>0
Intersection point of both curves; x=m(mx2)2=m3x4 ⇒m3x4−x=0 ⇒x(m3x3−1)=0 ⇒x(mx−1)(m2x2+1+mx)=0 ⇒x=0,x=1/m and y=0,y=1/m
We take only the points =(0,0) and (1/m,1/m)
Now, the area of the curve =0∫1/m(mx−mx2)dx
Given, 41=[3m2⋅x3/2−m⋅3x3]01/m ⇒41=[3m2⋅m3/21−3m⋅m31] ⇒41={3m22−3m21} ⇒41=3m21 ⇒m2=34 ∴m=±32