Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the area between y = mx2 and x = my2(m>0) is (1/4) units, then value of m is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the area between $y = mx^2$ and $x = my^2(m>0)$ is $\frac {1}{4}$ units, then value of $m$ is
KCET
KCET 2011
Application of Integrals
A
$\pm 3\sqrt 2$
31%
B
$\sqrt{3}$
19%
C
$\sqrt {2}$
18%
D
$\pm \frac{2}{\sqrt{3}} $
32%
Solution:
Given curves; $y=m x^{2}$ and $y^{2} m=x ; m>0$
Intersection point of both curves;
$x= m\left(m x^{2}\right)^{2}=m^{3} x^{4}$
$\Rightarrow m^{3} x^{4}-x =0$
$\Rightarrow x\left(m^{3} x^{3}-1\right)=0$
$\Rightarrow x(m x-1)\left(m^{2} x^{2}+1+m x\right)=0$
$\Rightarrow x=0, x=1 / m \text { and } y=0, y=1 / m$
We take only the points
$=(0,0) \text { and }(1 / m, 1 / m)$
Now, the area of the curve
$=\int\limits_{0}^{1 / m}\left(\sqrt{\frac{x}{m}}-m x^{2}\right) d x$
Given, $\frac{1}{4}=\left[\frac{2}{3 \sqrt{m}} \cdot x^{3 / 2}-m \cdot \frac{x^{3}}{3}\right]_{0}^{1 / m}$
$\Rightarrow \frac{1}{4}=\left[\frac{2}{3 \sqrt{m}} \cdot \frac{1}{m^{3 / 2}}-\frac{m}{3} \cdot \frac{1}{m_{3}}\right]$
$\Rightarrow \frac{1}{4}=\left\{\frac{2}{3 m^{2}}-\frac{1}{3 m^{2}}\right\}$
$\Rightarrow \frac{1}{4}=\frac{1}{3 m^{2}}$
$\Rightarrow m^{2}=\frac{4}{3}$
$\therefore m=\pm \frac{2}{\sqrt{3}}$