Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the absolute maximum value of the function f(x)=(x2-2 x+7) e(4 x3-12 x2-180 x+31) in the interval [-3,0] is f(α), then:
Q. If the absolute maximum value of the function
f
(
x
)
=
(
x
2
−
2
x
+
7
)
e
(
4
x
3
−
12
x
2
−
180
x
+
31
)
in the interval
[
−
3
,
0
]
is
f
(
α
)
, then:
746
118
JEE Main
JEE Main 2022
Application of Derivatives
Report Error
A
α
=
0
7%
B
α
=
−
3
72%
C
α
∈
(
−
1
,
0
)
5%
D
α
∈
(
−
3
,
−
1
)
16%
Solution:
f
′
(
x
)
=
e
(
4
x
3
−
12
x
2
−
180
x
+
31
)
(
12
(
x
2
−
2
x
+
7
)
(
x
+
3
)
(
x
−
5
)
+
2
(
x
−
1
)
)
for
x
∈
[
−
3
,
0
]
⇒
f
′
(
x
)
<
0
f
(
x
)
is decreasing function on
[
−
3
,
0
]
The absolute maximum value of the function
f
(
x
)
is at
x
=
−
3
⇒
α
=
−
3