We have, 9x2+5y2=1
Let e be the eccentricity of the ellipse. Then, e2=1−95⇒e=32
The coordinates of the end-points of latusrectum are L(2,35),M(−2,35),M′(−2,3−5) and L′(2,−35)
The equation of tangents at these points are 2x+3y−9=0…(i) −2x+3y−9=0…(ii) 2x+3y+9=0…(iii) −2x+3y+9=0…(iv)
By solving above equations, we get A(0,3),B(−29,0),C(0,−3) and D(29,0)
Now, AC=(3+3)2=62=6
and BD=(29+29)2=92=9
Now, area of quadrilateral =21×6×9 =27 sq. units