Q.
If tangents are drawn to the ellipse x2+2y2=2 at all points on the ellipse other than its four vertices then the mid points of the tangents intercepted betwen the coordinate axes lie on the curve :
Equation of general tangent on ellipse asecθx+bcosecθy=1 a=2,b=1 ⇒2secθx+cosecθy=1
Let the midpoint be (h,k) h=22secθ⇒cosθ=2h1
and k=2cosecθ⇒sinθ=2k1 ∵sin2θ+cos2θ=1 ⇒2h21+4k21=1 ⇒2x21+4y21=1