tanx=−34
Given that, x lies in second quadrant.
i.e., ∵tanx=1−tan22x2tan2x=−34 ∴3tan2x=−2(1−tan22x) ⇒3tan2x=−2+2tan22x ⇒2tan22x−3tan2x−2=0 ⇒2tan22x−(4−1)tan2x−2=0 ⇒2tan2x(tan2x−2)+1(tan2x−2)=0 ⇒(2tan2x+1)(tan2x−2)=0 ⇒tan2x=2 or tan2x=−21 ∴2π<x<π⇒4π<2x<2π
i.e., 2x lies in first quadrant.
Therefore, tan2x=2=12= base perpendicular =ABAC
Using Pythagoras theorem, (BC)2−(AC)2+(AB)2 ⇒(BC)2=4+1=5 ⇒BC=5
Now, sin2x= hypotenuse perpendicular =52=525 ∴cos2x= hypotenuse base =51=55
Note Students are advised to use the positive and negative signs carefully according to quadrant system.