Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If tan θ1, tan θ2, tan θ3, tan θ4, are the roots of the equation x4-x3 sin 2 β+x2 cos 2 β-x cos β- sin β=0 then tan (θ1+θ2+θ3+θ4) is
Q. If
tan
θ
1
,
tan
θ
2
,
tan
θ
3
,
tan
θ
4
, are the roots of the equation
x
4
−
x
3
sin
2
β
+
x
2
cos
2
β
−
x
cos
β
−
sin
β
=
0
then
tan
(
θ
1
+
θ
2
+
θ
3
+
θ
4
)
is
1932
214
Trigonometric Functions
Report Error
A
sin
β
B
cos
β
C
tan
β
D
cot
β
Solution:
Given equation
x
4
−
x
3
sin
(
2
β
)
+
x
2
cos
(
2
β
)
−
x
cos
β
−
sin
β
=
0
∴
S
1
=
sin
(
2
β
)
,
S
2
=
cos
2
β
,
S
3
=
cos
β
,
S
4
=
−
sin
β
Now
tan
(
θ
1
+
θ
2
+
θ
3
+
θ
4
)
=
1
−
s
2
+
s
4
s
1
−
s
3
=
1
−
c
o
s
2
β
−
s
i
n
β
s
i
n
(
2
β
)
−
c
o
s
β
=
2
s
i
n
2
β
−
s
i
n
β
2
s
i
n
β
c
o
s
β
−
c
o
s
β
=
cot
β