Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If tan ((π/9)), x, tan ((7 π/18)) are in arithmetic progression and tan ((π/9)), y, tan ((5 π/18)) are also in arithmetic progression, then |x-2 y| is equal to :
Q. If
tan
(
9
π
)
,
x
,
tan
(
18
7
π
)
are in arithmetic progression and
tan
(
9
π
)
,
y
,
tan
(
18
5
π
)
are also in arithmetic progression, then
∣
x
−
2
y
∣
is equal to :
524
152
JEE Main
JEE Main 2021
Sequences and Series
Report Error
A
4
B
3
C
0
D
1
Solution:
x
=
2
1
(
tan
9
π
+
tan
18
7
π
)
and
2
y
=
tan
9
π
+
tan
18
5
π
SO,
x
−
2
y
=
2
1
(
tan
9
π
+
tan
18
7
π
)
−
(
tan
9
π
+
tan
18
5
π
)
⇒
∣
x
−
2
y
∣
=
∣
∣
2
c
o
t
9
π
−
t
a
n
9
π
−
tan
18
5
π
∣
∣
=
∣
∣
cot
9
2
π
−
cot
9
2
π
∣
∣
=
0
(
as
tan
18
5
π
=
cot
9
2
π
;
tan
18
7
π
=
cot
9
π
)