Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If tan ( displaystyle∑r=1n tan -1((2 r-1/(r2+r+1)(r2-r+1)-2 r3)))=961, then the value of n is equal to
Q. If
tan
(
r
=
1
∑
n
tan
−
1
(
(
r
2
+
r
+
1
)
(
r
2
−
r
+
1
)
−
2
r
3
2
r
−
1
)
)
=
961
, then the value of
n
is equal to
592
130
Inverse Trigonometric Functions
Report Error
A
31
B
30
C
30.
D
61
Solution:
r
=
1
∑
n
tan
−
1
(
(
r
2
+
r
+
1
)
(
r
2
−
r
+
1
)
−
2
r
3
2
r
−
1
)
=
r
=
1
∑
n
tan
−
1
(
r
4
+
r
2
+
1
−
2
r
3
2
r
−
1
)
=
r
=
1
∑
n
tan
−
1
(
1
+
r
2
(
r
2
−
2
r
+
1
)
2
r
−
1
)
=
r
=
1
∑
n
tan
−
1
(
1
+
r
2
(
r
−
1
)
2
r
2
−
(
r
−
1
)
2
)
=
r
=
1
∑
n
(
tan
−
1
r
2
−
tan
−
1
(
r
−
1
)
2
)
=
tan
−
1
(
n
2
)
Now
tan
(
tan
−
1
(
n
2
)
)
=
961
⇒
n
2
=
961
⇒
n
=
31