Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If tan (cot x) = cot (tan x), then
Q. If tan (cot x) = cot (tan x), then
1648
241
Trigonometric Functions
Report Error
A
s
in
2
x
=
(
2
n
+
1
)
π
2
11%
B
s
in
x
=
(
2
n
+
1
)
π
4
31%
C
s
in
2
x
=
(
2
n
+
1
)
π
4
49%
D
None of these
9%
Solution:
t
an
(
co
t
x
)
=
co
t
(
t
an
x
)
=
t
an
(
2
π
−
t
an
x
)
⇒
co
t
x
=
n
π
+
2
π
−
t
an
x
[
∵
t
an
θ
=
t
an
α
⇒
θ
=
nπ
+
α
]
⇒
co
t
x
+
t
an
x
=
n
π
+
2
π
⇒
s
in
x
cos
x
+
cos
x
s
in
x
=
(
2
n
+
1
)
2
π
⇒
s
in
x
cos
x
1
=
(
2
n
+
1
)
2
π
⇒
s
in
2
x
1
=
4
(
2
n
+
1
)
π
⇒
s
in
2
x
=
(
2
n
+
1
)
π
4