Given that, tan−1(x+2)+tan−1(x+2)−tan−1(21)=0 ⇒tan−1(1−(x2−4)x+2+x−2)−tan−1(21)=0 ⇒tan−1(1−(x2−4)2x)−tan−1(21)=0 ⇒tan−1(1+(1−(x2−4))2x.21(1−(x2−4)2x−21))=0 ⇒tan−1(2(1−(x2−4))2(1−(x2−4))+2x2(1−(x2−4))4x−1+x2−4)=0 ⇒tan−1(−2x2+2x+6x2+4x−5)=0 ⇒x2+4x−5=0 ⇒x=1,−5 ⇒x=1∵−5 is not possible.