Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If tan-1(x - 1) + tan-1 x + tan-1(x + 1)=tan-1 3x, then the values of x are
Q. If
t
a
n
−
1
(
x
−
1
)
+
t
a
n
−
1
x
+
t
a
n
−
1
(
x
+
1
)
=
t
a
n
−
1
3
x
, then the values of
x
are
1446
234
Inverse Trigonometric Functions
Report Error
A
±
2
1
19%
B
0
,
2
1
13%
C
0
,
−
2
1
12%
D
0
,
±
2
1
56%
Solution:
We have,
t
a
n
−
1
(
x
−
1
)
+
t
a
n
−
1
x
+
t
a
n
−
1
(
x
+
1
)
=
t
a
n
−
1
3
x
⇒
t
a
n
−
1
(
x
−
1
)
+
t
a
n
−
1
(
x
+
1
)
=
t
a
n
−
1
3
x
−
t
a
n
−
1
x
⇒
t
a
n
−
1
{
1
−
(
x
2
−
1
)
(
x
−
1
)
+
(
x
+
1
)
}
=
t
a
n
−
1
{
1
+
3
x
2
3
x
−
x
}
⇒
2
−
x
2
2
x
=
1
+
3
x
2
2
x
⇒
2
x
(
1
+
3
x
2
)
=
2
x
(
2
−
x
2
)
⇒
2
x
(
4
x
2
−
1
)
=
0
⇒
x
=
0
or
x
=
±
2
1