Given, tan−12x+tan−13x=4π.....(i) ⇒tan−1(1−2x⋅3x2x+3x)=4π ⇒tan−1(1−6x25x)=4π ⇒1−6x25x=tan4π ⇒1−6x25x=1 ⇒5x=1−6x2 ⇒6x2+5x−1=0 ⇒6x2+6x−x−1=0 ⇒6x(x+1)−1(x+1)=0 ⇒(x+1)(6x−1)=0⇒x=61,−1
But x=−1 does not satisfy Eq. (i). Since here RHS >0 and tan−1(x)<0 for x<0.
So, x=61 is the only solution for given equation.