Q.
If tan−12x+11+tan−14x+11=cot−1(2x2) , then the number of all possible values of x is/are
1841
221
NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions
Report Error
Solution:
tan−1(1−{(2x+1)1}⋅{(4x+1)1}{(2x+1)1}+{(4x+1)1})=tan−1x22 tan−1(8x2+6x6x+2)=tan−1x22
Therefore, 4x2+3x3x+1=x22 x2(3x+1)=2(4x2+3x) 3x3−7x2−6x=0 x(3x2−7x−6)=0 x(x−3)(3x+2)=0
We take x=3,0 because when x=−32,LHS of the given equation will be negative whereas tan−1(x22) is positive.
Hence, the number of values =2