Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If [t] denotes the greatest integer ≤ t, then the value of ∫01[2 x-|3 x2-5 x+2|+1] d x is:
Q. If
[
t
]
denotes the greatest integer
≤
t
, then the value of
∫
0
1
[
2
x
−
∣
∣
3
x
2
−
5
x
+
2
∣
∣
+
1
]
d
x
is:
377
1
JEE Main
JEE Main 2022
Integrals
Report Error
A
6
37
+
13
−
4
0%
B
6
37
−
13
−
4
100%
C
6
−
37
−
13
+
4
0%
D
6
−
37
+
13
+
4
0%
Solution:
I
=
0
∫
1
[
2
x
−
∣
∣
3
x
2
−
3
x
−
2
x
+
2
∣
∣
+
1
]
d
x
I
=
0
∫
1
[
2
x
−
∣
(
3
x
−
2
)
(
x
−
1
)
∣
]
d
x
+
0
∫
1
1
d
x
I
=
0
∫
2/3
[
(
2
x
−
(
3
x
2
−
5
x
+
2
)
)
]
d
x
+
∫
2/3
1
(
2
x
+
(
3
x
2
−
5
x
+
2
)
)
d
x
+
1
I
=
0
∫
2/3
[
−
3
x
2
+
7
x
−
2
]
d
x
+
2/3
∫
1
(
3
x
2
−
3
x
+
2
)
d
x
+
1
0
∫
α
(
−
2
)
d
x
+
α
∫
1/3
(
−
1
)
d
x
+
1/3
∫
β
0
d
x
+
β
∫
2/3
1.
d
x
=
−
2
α
−
(
3
1
−
α
)
+
3
2
−
β
=
−
α
−
β
+
3
1
When
x
∈
(
3
2
,
1
)
3
x
2
−
3
x
+
2
∈
(
3
4
,
2
)
[
3
x
2
−
3
x
+
2
]
=
1
∴
2/3
∫
1
[
3
x
2
−
3
x
+
2
]
d
x
=
1
(
1
−
3
2
)
=
3
1
Hence
I
=
(
3
1
−
(
α
+
β
)
)
+
(
3
1
)
+
1
=
3
5
−
(
6
7
−
37
+
6
7
−
13
)
=
3
−
2
+
6
37
+
13
=
6
37
+
13
−
4