Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If system of linear equations (a-1) x+z=α, x+(b-1) y=β and y+(c-1) z=γ where a, b, c ∈ I does not have a unique solution, then maximum possible value of |a+b+c| is
Q. If system of linear equations
(
a
−
1
)
x
+
z
=
α
,
x
+
(
b
−
1
)
y
=
β
and
y
+
(
c
−
1
)
z
=
γ
where
a
,
b
,
c
∈
I
does not have a unique solution, then maximum possible value of
∣
a
+
b
+
c
∣
is
1413
84
Determinants
Report Error
A
0
B
1
C
3
D
4
Solution:
(
a
−
1
)
x
+
0
y
+
z
=
α
....(1)
x
+
(
b
−
1
)
y
+
0
z
=
β
....(2)
0
x
+
y
+
(
c
−
1
)
z
=
γ
....(3)
For no unique solution
D
=
0
∣
∣
(
a
−
1
)
1
0
0
(
b
−
1
)
1
1
0
(
c
−
1
)
∣
∣
=
0
(
a
−
1
)
(
b
−
1
)
(
c
−
1
)
+
1
=
0
∴
a
=
2
;
b
=
2
;
c
=
0
Hence,
∣
a
+
b
+
c
∣
=
4
.