Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle∑nk=1 k(k+1)(k-1) = pn4 + qn3 + tn2 + sn, where p, q, t and s are constants, then the value of s is equal to
Q. If
k
=
1
∑
n
k
(
k
+
1
)
(
k
−
1
)
=
p
n
4
+
q
n
3
+
t
n
2
+
s
n
,
where
p
,
q
,
t
and s are constants, then the value of
s
is equal to
2577
199
BITSAT
BITSAT 2017
Report Error
A
−
4
1
14%
B
−
2
1
71%
C
2
1
14%
D
4
1
0%
Solution:
Given,
k
=
1
∑
n
k
(
k
+
1
)
(
k
−
1
)
=
p
n
4
+
q
n
3
t
n
2
+
s
n
Therefore,
k
=
1
∑
n
(
k
3
−
k
)
=
p
n
4
+
q
n
3
+
t
n
2
+
s
n
⇒
(
2
n
(
n
+
1
)
)
2
−
2
n
(
n
+
1
)
=
p
n
4
+
q
n
3
+
t
n
2
+
s
n
On dividing both sides by
n
, we get
4
n
(
n
+
1
)
2
−
2
(
n
+
1
)
=
p
n
3
+
q
n
2
+
t
n
+
s
Put
n
=
0
, we get
0
−
2
1
=
s
⇒
s
=
−
2
1