Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle∑9i-1(xi-5)=9 and displaystyle∑9i-1(xi-5)2=45 , then the standard deviation of the 9 items x1, x2 ,⋅s, x9 is
Q. If
i
−
1
∑
9
(
x
i
−
5
)
=
9
and
i
−
1
∑
9
(
x
i
−
5
)
2
=
45
, then the standard deviation of the
9
items
x
1
,
x
2
,
⋯
,
x
9
is
2756
194
KEAM
KEAM 2014
Statistics
Report Error
A
9
B
4
C
3
D
2
E
1
Solution:
Given,
i
=
1
∑
n
(
x
i
−
5
)
=
9
and
i
=
1
∑
9
(
x
i
−
5
)
2
=
45
∴
Standard deviation
=
9
[
i
=
1
∑
9
(
x
i
−
5
)
]
2
−
i
=
1
∑
9
(
x
i
−
5
)
2
=
9
(
9
)
2
−
45
=
9
81
−
45
=
9
36
=
4
=
2