Q.
If sum of maximum and minimum value of y=log2(x4+x2+1)−log2(x4+x3+2x2+x+1) can be expressed in form ((log2m)−n), where m and n are coprime then compute (m+n).
160
69
Complex Numbers and Quadratic Equations
Report Error
Answer: 5
Solution:
We have y=log2(x4+x3+x2+x+1(x2+x+1)(x2−x+1))=log2(x2+1x2−x+1)
Assume z=x2+1x2−x+1 (z−1)x2+x+(z−1)=0. As x∈R, so D≥0⇒1−4(z−1)2≥0⇒(z−1)2≤41⇒21≤z≤23
So, ymin=log2(21)=−1 and ymax=log2(23)=(log23−1)
Hence ymin.+ymax.=log23−2≡((log2m)−n) ∴m=3,n=2
Hence (m+n)=3+2=5