Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sum of all the solutions of the equation 8 cos x.( cos ((π/6) + x). cos((π/6) - x) - (1/2))= 1 in [0, π] is k π , then k is equal to :
Q. If sum of all the solutions of the equation
8
cos
x
.
(
cos
(
6
π
+
x
)
.
cos
(
6
π
−
x
)
−
2
1
)
=
1
in
[
0
,
π
]
is
kπ
, then
k
is equal to :
3607
181
JEE Main
JEE Main 2018
Trigonometric Functions
Report Error
A
3
2
13%
B
9
13
69%
C
9
8
10%
D
9
20
9%
Solution:
8
cos
x
⋅
(
cos
2
6
π
−
sin
2
x
−
2
1
)
=
1
⇒
8
cos
x
(
4
3
−
2
1
−
1
+
cos
2
x
)
=
1
⇒
8
cos
x
(
4
−
3
+
4
c
o
s
2
x
)
=
1
⇒
2
cos
3
x
=
1
⇒
cos
3
x
=
2
1
⇒
3
x
=
3
π
,
3
5
π
,
3
7
π
⇒
x
=
9
π
,
9
5
π
,
9
7
π
⇒
Sum
=
9
13
π
⇒
k
=
9
13