Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sum of 3 positive numbers α, β, γ is equal to (π/2) and cot α, cot β, cot γ form an arithmetic progression then which of the following is(are) correct?
Q. If sum of 3 positive numbers
α
,
β
,
γ
is equal to
2
π
and
cot
α
,
cot
β
,
cot
γ
form an arithmetic progression then which of the following is(are) correct?
76
132
Sequences and Series
Report Error
A
Value of
cot
α
⋅
cot
γ
is equal to 3
B
Maximum value of the product
α
β
γ
is
216
π
3
C
cot
γ
−
tan
α
−
tan
β
=
tan
α
tan
β
cot
γ
D
cos
(
α
+
β
)
=
sin
γ
Solution:
Given
0
<
α
,
β
,
γ
<
2
π
...(1)
Also,
2
cot
β
=
cot
α
+
cot
γ
....(2)
(A)
α
+
γ
=
(
9
0
∘
−
β
)
⇒
cot
(
α
+
γ
)
=
tan
β
⇒
c
o
t
γ
+
c
o
t
α
c
o
t
α
c
o
t
γ
−
1
=
tan
β
⇒
cot
α
cot
γ
=
3
[Using (2)]
(B) Using A.M.
≥
GM. (for positive numbers)
⇒
3
α
+
β
+
γ
≥
(
α
β
γ
)
1/3
⇒
α
β
γ
≤
27
1
×
(
8
π
3
)
=
216
π
3
(C) As,
γ
=
[
9
0
∘
−
(
α
+
β
)
]
⇒
cot
γ
=
tan
(
α
+
β
)
⇒
cot
γ
=
1
−
t
a
n
α
t
a
n
β
t
a
n
α
+
t
a
n
β
⇒
cot
γ
−
tan
α
−
tan
β
=
tan
α
⋅
tan
β
⋅
cot
γ
(D) Obviously,
cos
(
α
+
β
)
=
sin
γ
.