Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If siny = x sin(a + y), then dy/dx is
Q. If
s
in
y
=
x
s
in
(
a
+
y
)
, then
d
y
/
d
x
is
1329
201
Limits and Derivatives
Report Error
A
s
in
(
a
+
y
)
3%
B
s
i
n
2
(
a
+
y
)
26%
C
s
in
a
s
i
n
2
(
a
+
y
)
59%
D
s
in
a
s
in
(
a
+
y
)
12%
Solution:
s
in
y
=
x
s
in
(
a
+
y
)
or
s
in
(
a
+
y
)
s
in
y
=
x
…
(
i
)
Differentiating
(
i
)
with respect to
x
, we get
s
i
n
2
(
a
+
y
)
s
in
(
a
+
y
)
cos
y
d
x
d
y
−
cos
(
a
+
y
)
s
in
y
d
x
d
y
=
1
⇒
d
x
d
y
[
s
in
(
a
+
y
−
y
)
]
=
s
i
n
2
(
a
+
y
)
(Using
s
in
(
A
−
B
)
=
s
in
A
cos
B
−
cos
A
s
in
B
)
∴
d
x
d
y
=
s
in
a
s
i
n
2
(
a
+
y
)