Q.
If siny+e−xcosy=e, then dxdy at (1, π) is equal to
2341
216
Continuity and Differentiability
Report Error
Solution:
We have, siny+e−xcosy=e
Differentiating both sides w.r.t. x, we get cosydxdy+e−xcosy{xsinydxdy−cosy}=0 ⇒(cosy+e−xcosy⋅xsiny)dxdy=(e−xcosy)cosy ⇒dxdy=cosy+x⋅e−xcosysinye−xcosy⋅cosy ∴dxdy∣∣(1,π)=cosπ+e−cosπsinπe−cosπ⋅cosπ=e