It is given that sinx+siny=23+1 ⇒2sin2x+ycos2x−y=23+1 ⇒sin2x+ycos2x−y=43+1
and cosx+cosy=23−1 ⇒2cos2x+ycos2x−y=23−1 ⇒dcos2x+ycos2x−y=43−1…(ii)
On dividing relation (i) and (ii), we get tan2x+y=3−13+1 ⇒tan22x+y=3+1−233+1+23=2−32+3 ⇒tan22(x+y)=4−34+3+43=7+43…(iii)
On squaring and adding Eqs. (i) and (ii), we get cos22x−y=161×2(3+1)=21 ⇒sec22x−y=2 ⇒tan22x−y=sec22x−y−1=2−1=1
So, tan22x−y+tan22x+y=1+(7+43)