Given, sinx−siny=21...(i)
and cosx−cosy=1...(ii) ⇒2cos2x+y⋅sin2x−y=21...(iii)
and −2sin2x+y⋅sin2x−y=1...(iv)
On dividing Eq. (iv) by Eq. (iii), we get −tan(2x+y)=2 ⇒tan(2x+y)=−2...(v)
Now, tan(x+y)=1−tan2(2x+y)2tan(2x+y) (∵tan2θ=1−tan2θ2tanθ) =1−(−2)22(−2)[using Eq. (v)] =1−4−4=−3−4=34