sinx=53
Given that x lies in second quadrant.
i.e., 2π<x<π ∵sin2x+cos2x=1 ⇒cos2x=1−sin2x=1−(53)2 =1−259=2525−9=2516 ⇒cosx=±54 ∵ In second quadrant, cosx is negative, so we will leave its positive value.
i.e., cosx=−54 ⇒tanx=cosxsinx =−5453=−43 ⇒cotx=tanx1=−34 ⇒cosx=cosx1=−45
and cosecx=sinx1=35