sinx=41
Given that, x is in second quadrant.
i.e., 2π<x<π ∵sinx=1+tan22x2tan2x ∴41=1+tan22x2tan2x ⇒1+tan22x=8tan2x ⇒tan22x−8tan2x+1=0 ⇒tan2x=28±64−4 ⇒tan2x=28±215⇒tan2x=4±15 ∵2π<x<π⇒4π<2x<2π
i.e., 2x lies in Ist quadrant and as 2x∈(4π,2π),tan2x>1 ⇒tan2x=4+15
Now, sec22x=1+tan22x=1+(4+15)2 =1+16+15+815 ⇒sec22x=32+815 ⇒sec22x=8(4+15) ⇒cos22x=sec22x1 =8(4+15)1×(4−15)(4−15) ⇒cos22x=8(4−15) sinx=41,cosx=4−15 2sin22x=1+415=44+15 sin22x=84+15 ⇒sin2x=84+15