Given, sinθ−cosθ=1 sin3θ−cos3θ=(sinθ−cosθ)<br/><br/>(sin2θ +cos2θ+sinθcosθ) =1(1+sinθcosθ) =1+sinθcosθ ...(i) [∵sinθ−cosθ=1]
On squaring both sides, (sinθ−cosθ)2=(1)2 ⇒(sin2θ+cos2θ−2sinθcosθ)=1 ⇒1−2sinθcosθ−1 ⇒sinθcosθ=0 ...(ii)
From Eqs. (ii) and (i), we get sin3θ−cos3θ=1