We have :sinA=53, where 0<A<2π ∴cosA=±1−sin2A ⇒cosA=+1−sin2A=1−259=54 [∵cos is positive in first quadrant ]
It is given that :cosB=13−12 and π<B<23π ∴sinB=±1−cos2B⇒sinB=−1−cos2B [∵ Sine is negative in the third quadrant] ⇒sinB=−1−(13−12)2=−135
Now, sin(A−B)=sinAcosB−cosAsinB =53×13−12−54×13−5=−6516