Given asin4θ+bcos4θ=a+b1 ⇒a(sin2θ)2+b(1−sin2θ)2=a+b1 ⇒λ2b(a+b)+(a+b)a(1−λ)2=ab,
where λ=sin2θ ⇒λ2ab+λ2b2+a2+a2λ2−2a2λ+ab+abλ2−2abλ =ab ⇒λ2{a2+b2+2ab}+a2−2λa(a+b)=0 ⇒{λ(a+b)}2+a2−2λa(a+b)=0 ⇒{λ(a+b)−a}2=0 ⇒λ=a+ba ⇒sin2θ=a+ba…(i)
From (i), cos2θ=1−sin2θ=1−a+ba=a+bb…(ii)
Using (i) and (ii), we get a5sin12θ+b5cos12θ =a5(sin2θ)6+b5(cos2θ)6 =a5(a+ba)6+b5(a+bb)6 =(a+b)6a+b=(a+b)51