Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sin 3 θ = Sin θ , how many solutions exist such that -2 π <θ <2 π ?
Q. If
s
in
3
θ
=
S
in
θ
, how many solutions exist such that
−
2
π
<
θ
<
2
π
?
5220
205
KCET
KCET 2007
Trigonometric Functions
Report Error
A
9
14%
B
8
22%
C
7
33%
D
5
31%
Solution:
We have,
sin
3
θ
=
sin
θ
⇒
sin
3
θ
−
sin
θ
=
0
⇒
2
cos
(
2
3
θ
+
θ
)
sin
(
2
3
θ
−
θ
)
=
0
⇒
cos
2
θ
⋅
sin
θ
=
0
⇒
cos
2
θ
=
0
⇒
cos
2
θ
=
cos
(
2
π
)
or
sin
θ
=
0
,
π
,
2
π
or
θ
=
0
,
π
=
2
π
⇒
2
θ
=
2
π
or
θ
=
0
,
π
,
2
π
⇒
θ
=
4
nπ
or
θ
=
0
,
π
,
2
π
−
2
π
<
θ
<
2
π
θ
=
4
π
,
4
3
π
,
4
5
π
,
4
7
π
or
θ
=
0
,
π
,
2
π
Thus, total number of solutions =7