Given sin2θ+sin2φ=21… (i) cos2θ+cos2φ=23… (ii)
Squaring on both Eqs. (i) and (ii), we get (sin2θ+sin2φ)2=41 ⇒sin22θ+sin22φ+2sin2θsin2φ=41 ⇒sin22θ+sin22φ+2sin2θsin2φ=41 ... (iii) (cos2θ+cos2φ)2=49 ⇒cos22θ+cos22φ+2cos2θcos2φ=49 ....(iv)
On adding Eqs. (iii) and (iv), we get ⇒sin22θ+cos22θ+sin22φ+cos22φ +2(sin2θsin2φ)+cos2θcos2φ)=410 ⇒2+2{cos(2θ−2φ)}=410 ⇒2{1+cos2(θ−φ)}=410 ⇒1+cos2(θ−φ)=810 ⇒2cos2(θ−φ)=810 ⇒cos2(θ−φ)=85