Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sin-1 x + sin-1 y + sin-1z = (π/2) then value of x2 + y2 + z2 + 2xyz equals
Q. If
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
2
π
then value of
x
2
+
y
2
+
z
2
+
2
x
yz
equals
1555
194
Inverse Trigonometric Functions
Report Error
A
2
0%
B
0
63%
C
−
1
21%
D
1
16%
Solution:
s
i
n
−
1
x
+
s
i
n
−
1
z
=
2
π
−
s
i
n
−
1
y
Using
cos
on both sides, we have
1
−
x
2
1
−
z
2
=
x
z
+
y
⇒
x
2
+
y
2
+
z
2
+
2
x
yz
=
1
(squaring and adjusting the terms)
Short Cut Method :
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
2
π
⇒
s
i
n
−
1
x
=
s
i
n
−
1
y
=
s
i
n
−
1
z
=
2
π
×
3
1
x
=
y
=
z
=
2
1
∴
x
2
+
y
2
+
z
2
+
2
x
yz
=
4
3
+
4
1
=
1