Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sin-1 ((x/5))+cosec-1((5/4))=(π/2), then the value of x is
Q. If
s
i
n
−
1
(
5
x
)
+
cose
c
−
1
(
4
5
)
=
2
π
, then the value of
x
is
1650
169
Inverse Trigonometric Functions
Report Error
Answer:
3
Solution:
s
i
n
−
1
(
5
x
)
+
cose
c
−
1
(
4
5
)
=
2
π
⇒
s
i
n
−
1
(
5
x
)
=
2
π
−
cose
c
−
1
(
4
5
)
⇒
s
i
n
−
1
(
5
x
)
=
2
π
−
s
i
n
−
1
(
5
4
)
[
∵
s
i
n
−
1
x
+
co
s
−
1
x
=
π
2
]
⇒
s
i
n
−
1
(
5
x
)
=
co
s
−
1
(
5
4
)
___
(
i
)
Let
co
s
−
1
5
4
=
A
⇒
cos
A
=
5
4
⇒
A
=
co
s
−
1
(
4/5
)
⇒
s
in
A
=
5
3
⇒
A
=
s
i
n
−
1
5
3
∴
co
s
−
1
(
4/5
)
=
s
i
n
−
1
(
3/5
)
∴
equation
(
i
)
become,
s
i
n
−
1
5
x
=
s
i
n
−
1
5
3
⇒
5
x
=
5
3
⇒
x
=
3