As 0≤(sin−1a)2≤4π2,0≤(cos−1b)2≤π2,0≤(sec−1c)2≤π2( except 4π2) and 0<(cosec−1d)2≤4π2
So 0<(sin−1a)2+(cos−1b)2+(sec−1c)2+(cosec−1d)2≤25π2 ∴(sin−1a)2+(cos−1b)2+(sec−1c)2+(cosec−1d)2=25π2( Given ) ⇒(sin−1a)2=4π2,(cos−1b)2=π2,(sec−1c)2=π2 and (cosec−1d)2=4π2
Hence (sin−1a)2−(cos−1b)2+(sec−1b)2−(cosec−1d)2=0