Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sec θ+ tan θ=1, then one root of equation a(b-c) x2+b(c-a) x+c(a-b)=0 is:
Q. If
sec
θ
+
tan
θ
=
1
, then one root of equation
a
(
b
−
c
)
x
2
+
b
(
c
−
a
)
x
+
c
(
a
−
b
)
=
0
is:
1994
213
Trigonometric Functions
Report Error
A
tan
θ
B
sec
θ
C
−
sec
θ
D
sin
θ
Solution:
Given,
sec
θ
+
tan
θ
=
1
⇒
sec
θ
−
tan
θ
=
1
[
∵
sec
2
θ
−
tan
2
θ
=
1
]
∴
2
sec
θ
=
2
⇒
sec
θ
=
1
∴
cos
θ
=
1
Clearly,
1
is a root of given quadratic equation.
∴
sec
θ
and
cos
θ
are roots of given quadratic equation.