Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If S = x ∈ [0, 2 π]: |0& cos x& - sin x sin x&0& cos x cos x& sin x&0| = 0 then ∑x ϵ S tan((π/3) + x) is equal to :
Q. If
S
=
⎩
⎨
⎧
x
∈
[
0
,
2
π
]
:
∣
∣
0
sin
x
cos
x
cos
x
0
sin
x
−
sin
x
cos
x
0
∣
∣
=
0
⎭
⎬
⎫
then
∑
x
ϵ
S
tan
(
3
π
+
x
)
is equal to :
3763
247
JEE Main
JEE Main 2017
Determinants
Report Error
A
4
+
2
3
40%
B
−
2
+
3
15%
C
−
2
−
3
25%
D
−
4
−
2
3
20%
Solution:
0
(
0
−
cos
x
)
−
cos
x
(
0
−
co
s
2
x
)
−
s
in
x
(
s
i
n
2
x
−
0
)
=
0
co
s
3
x
−
s
i
n
3
x
=
0
t
a
n
3
=
1
⇒
t
an
x
=
1
∑
1
−
3
3
+
t
an
x
∑
1
−
3
3
+
1
×
1
+
3
1
+
3
⇒
∑
−
2
1
+
3
+
2
3
=
∑
−
2
4
2
−
3
2
3
∑
−
2
−
3