Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Sn= displaystyle ∑ r = 1n tr = (1/6) n(2 n2 + 9 n + 13), then displaystyle ∑ r = 1n √tr is equal to
Q. If
S
n
=
r
=
1
∑
n
t
r
=
6
1
n
(
2
n
2
+
9
n
+
13
)
,
then
r
=
1
∑
n
t
r
is equal to
1696
216
NTA Abhyas
NTA Abhyas 2020
Sequences and Series
Report Error
A
2
1
n
(
n
+
1
)
B
2
1
n
(
n
+
3
)
C
(
n
+
1
)
2
D
n
2
Solution:
t
r
=
S
r
−
S
r
−
1
=
6
1
r
(
2
r
2
+
9
r
+
13
)
−
6
1
(
r
−
1
)
{
2
(
r
−
1
)
2
+
9
(
r
−
1
)
+
13
}
=
6
2
(
r
3
−
(
r
−
1
)
3
)
+
6
9
(
r
2
−
(
r
−
1
)
2
)
+
6
13
(
r
−
(
r
−
1
))
=
3
1
(
3
r
2
−
3
r
+
1
)
+
2
3
(
2
r
−
1
)
+
6
13
=
r
2
+
2
r
+
1
=
(
r
+
1
)
2
⇒
t
r
=
(
r
+
1
)
⇒
∑
r
=
1
n
t
r
=
∑
r
=
1
n
(
r
+
1
)
=
∑
r
=
1
n
r
+
∑
r
=
1
n
1
=
2
n
(
n
+
1
)
+
n
=
2
n
(
n
+
3
)