Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Sn denotes the sum of n terms of a GP whose common ratio is r, then (r-1) (dSn/dr) is equal to
Q. If
S
n
denotes the sum of
n
terms of a
GP
whose common ratio is
r
, then
(
r
−
1
)
d
r
d
S
n
is equal to
1711
202
Limits and Derivatives
Report Error
A
(
n
−
1
)
S
n
+
n
S
n
−
1
19%
B
(
n
−
1
)
S
n
−
n
S
n
−
1
62%
C
(
n
−
1
)
S
n
19%
D
None of these
0%
Solution:
We have,
S
n
=
r
−
1
a
(
r
n
−
1
)
⇒
(
r
−
1
)
S
n
=
a
r
n
−
a
On differentiating both sides w.r.t r, we get
(
r
−
1
)
d
r
d
S
n
+
S
n
=
na
r
n
−
1
−
0
⇒
(
r
−
1
)
d
r
d
S
n
=
na
r
n
−
1
−
S
n
=
n
[
n
t
h
term of GP]
−
S
n
=
n
[
S
n
−
S
n
−
1
]
−
S
n
=
(
n
−
1
)
S
n
−
n
S
n
−
1