Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Sn denotes the sum of first n terms of an A.P. and (S3n-Sn-1/22n-S2n-1)=31, then the value of n is
Q. If
S
n
denotes the sum of first n terms of an A.P. and
2
2
n
−
S
2
n
−
1
S
3
n
−
S
n
−
1
=
31
,
then the value of n is
3212
190
Sequences and Series
Report Error
A
21
B
15
C
16
D
19
Solution:
S
3
n
=
2
3
n
[
2
a
+
(
3
n
−
1
)
d
]
S
n
−
1
=
2
n
−
1
[
2
a
+
(
n
−
2
)
d
]
⇒
S
3
n
−
S
n
−
1
=
2
1
[
2
a
(
3
n
−
n
+
1
)]
+
2
d
[
3
n
(
3
n
−
1
)
−
(
n
−
1
)
(
n
−
2
)]
=
2
1
[
2
a
(
2
n
+
1
)
+
d
(
8
n
2
−
2
)]
=
a
(
2
n
+
1
)
+
d
(
4
n
2
−
1
)]
=
(
2
n
+
1
)
[
a
+
(
2
n
−
1
)
d
]
s
2
n
−
S
2
n
−
1
=
T
2
n
=
a
+
(
2
n
−
1
)
d
⇒
S
2
n
−
S
2
n
−
1
S
3
n
−
S
n
−
1
=
(
2
n
+
1
)
Given,
S
2
n
−
S
2
n
−
1
S
3
n
−
S
n
−
1
=
31
⇒
n
=
15